APPENDIX H SUMMARY OF LIMITS OF DETECTION FOR THE RECOMMENDED TARGET ANALYTES Table H-1. Summary of Limits of Detection for the Recommended Target Analytes^a | Target Analyte | Detection Limits ^b (ppm) | |---|-------------------------------------| | Metals | | | Arsenic (inorganic) ^c | 5×10 ⁻³ | | Cadmium ^d | 5×10 ⁻³ | | Mercury ^e | 1×10 ⁻³ | | Selenium ^f | 2×10 ⁻² | | Tributyltin ^g | 1×10 ⁻³ | | Organochlorine Pesticides ^h | | | Chlordane (total) | 1×10 ⁻³ | | cis-Chlordane | | | trans-Chlordane | | | cis-Nonachlor | | | trans-Nonachlor | | | Oxychlordane | | | DDT (Total) | | | 4,4'-DDT | 1×10 ⁻⁴ | | 1,4'-DDT | | | 4,4'-DDD | | | 2,4'-DDD | | | 4,4'-DDE | | | 2,4'-DDE | | | Dicofol | 1×10 ⁻² | | Dieldrin | 1×10 ⁻⁴ | | Endosulfan (Total) | 5×10 ⁻³ | | Endosulfan I | | | Endosulfan II | | | Endrin | 1×10 ⁻³ | | Heptachlor epoxide | 1×10 ⁻⁴ | | Hexachlorobenzene | 1×10 ⁻⁴ | | Lindane | 1×10 ⁻⁴ | | Mirex | 1×10 ⁻⁴ | | Toxaphene | 1×10 ⁻³ | | Organophosphate Pesticides ⁱ | | | Chlorpyrifos | 2×10 ⁻³ | | Diazinon | 1×10 ⁻² | | Disulfoton | 1×10 ⁻² | | Ethion | 2×10 ⁻² | | Turbufos | 5×10 ⁻² | (continued) Table H-1 (continued) | Target Analyte | Detection Limits ^b (ppm) | |--|--| | Chlorophenoxy Herbicides ^h Oxyfluorfen | 1×10 ⁻² | | PAHs ^j | 1×10 ⁻⁶ | | PCBs (Total Aroclors) ^h Dioxins/Furans (Total) ^k | 5×10 ⁻²
5×10 ⁻⁷ | PAHs = Polycyclic aromatic hydrocarbons. PCBs = Polychlorinated biphenyls. - ^a Detection limit provided for analysis of tissue on a wet weight basis. - Limit of detection shown is lowest value identified. - ^c Analysis by hydride generation atomic absorption spectrophotometry (HAA) with preconcentration (E. Crecelius, Battelle Pacific Northwest Laboratories, Marine Sciences Laboratory, Sequim, WA, personal communication, June 1995). - d Analysis by graphite furnace atomic absorption spectrophotometry (GFAA). - e Analysis by cold vapor atomic absorption spectrophotometry (CVAA). - Analysis by hydride generation on atomic absorption spectrophotometry (HAA). - ^g Analysis by gas chromatography/flame photometric detection (GC/FPD) (E. Crecelius, Battelle Pacific Northwest Laboratories, Marine Sciences Laboratory, Sequim, WA, personal communication, June 1995). - Analysis by gas chromatography/electron capture detection (GC/ECD), except where otherwise noted. GC/ECD does not provide definitive compound identification, and false positives due to interferences are commonly reported. Confirmation by an alternative GC column phase (with ECD), or by GC/MS with selected ion monitoring, is required for positive identification of PCBs, organochlorine pesticides, and chlorophenoxy herbicides. - i Analysis by gas chromatography/nitrogen-phosphorus detection (GC/NPD). - Analysis by gas chromatography/mass spectrometry (GC/MS). Detection limits of ≤1 ppb can be achieved using high-resolution gas chromatography/mass spectrometry (HRGC/HRMS). - ^k Analysis by high-resolution GC/high-resolution mass spectrometry (HRGC/HRMS).